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A PROBABILISTIC THEORY OF ANTI1-SUBMARINE WARFARE MODELS
DEVELOPED IN TERMS OF CONGESTION THEORY

By

Brian W. Conolly
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\ ABSTRACT
L
V
This report, which i1s methodological, deveiops a probabilistic
theory that has direct application to both antisubmarine

warfare and coungestion models. The theory is expressed in
congestion terminology because of the presumed wider knowledge
and appeal of this field. This results 1n a simplitfied /
presentation of the general theory of infinite service L
facility systems with specific application to M/Y/» and
X/M/&#,some of which have already been studied by Takics and
Khintchine. A new result is given for the output of the
latter process. The analogy between certain infinite

service facility systems and a single-server system with

queue length dependent service is exploited to provide results
for the latter process. A further new result for the busy
period of such a process is quoted. The antisubmarine
applications are Lo the formally similar models of the number
of units present in a geographical area, and to the attrition
of an enemy submarine force subjected to a steady threat trom
an antisubmarine barrier that geographical or cther

constraints compel it to transit.
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INTRODUCTION

This report is concerned with the theory of a probabilistic
model that may be used to describe generalized situations
that arise in a military context, in particular in anti-
submarine warfare. One situation is as follows: Units
arrive at the boundary of a geographical area in which

they propose to spend some time., They may be ships about
to cross an ocean or strait, singly or in convoy; or they
may be submarines going on patrol. In a non-military
situation they may be cars entering a car park, or
prospective clients arriving at a supermarket. As long as
the units ave not prevented from achieving this objective
they may be described in the languvage of Congestion or
Queueing Theory as "customers" entering a service facility
with infinite capacity, that is to say, one that can provide

service to any unit demanding it.

In these situations one needs to make statements about ti.e
total number of units in the area at any given time, and
about the number of units that leave the area in a given
time interval. These are respectively the content of the
area, and the output from the area. In a defensive situation
one might be interested in the number of merchant ship. in
an area subjected to a submarine, or other, threat simply
because one wants to know the scale of protection it is
required to provide. From the same point of view, one is
likely to want to know the magnitude of an enemy threat in
the area in order to be able ¢o assess the level oif forces
required to subdue it.,, The output from an area is equally
of interest, particularly if the "service time" within the
area includes the possibiiity of destruction as well as

safe transit.
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Numerical statements about content and output are most ecasily
made in deterministic terms. Thus, suppose the content of

an area at time t is £(t) units, while the rate of

arrival at the boundary is ) units per day and the mean

time required by each unit to transit. the area is u—l days.
Then the mean number of units leaving the area per day will

be pE& and we shall have

d .
a‘% = X-ug, [Eq. 1]
so that if ) and y are time independent and £(0) = £,

~ut

E(t) = g, e ™M+ (1 - eTHY, [Eq. 2]

where p = A/u. The output N(T) from the area in the
interval (0, T) is then

T
n(T) = u Jr E(t) dt

§0(1-e‘“T) + p £(T) LEq. 3]

where

£(T) = uT - (1- e_uT).

Predictions made on the basis of such a theory can be usetul

as indicators, but what is really needed in a more operationally

(98]




realistic treatment is a description of E&(t) and n(t)
in probabilistic terms. This can be achieved by studying

the basic quantities

pa(t) = Pr[(t)

il
=}
(I

and

v (t) =Pr [n(t) = n:]

with swvitable initial conditions. These are not, however, the
only probabilities of interest in an operaticnal study. The
duration of time, for example, when E&(t) >N, where N is some
prescribed number, is also of interest, both in relation to

targets and to the threat.

The same model car be used to describe the losses to an enemy
force of submarines that, in order to operate, has to cross an
antisubmarine barrier where a constant kill rate per transit
can be applied. Let E&(t) be the number of enemy submarines
on operational strength at time t, and ) the build.ng
rate. If all submarines are used, then the rate of arrival

at the barrier is proportional to £E&(t), and the number
destroyed per unit time can be written y€(t). Thus,

deterministically,

which is the same formal model as that given in Eq. | and

the same probabilistic theory will apply.




It will be noticed that the deterministiec differential equation
given above is suggestive of radioactive decay. Familiarity
with warfare models of the Lanchester type and with epidemic
and struggle-for-survival models in ecology will lead to the
recognition that the model belongs also to this family, though
with less complexity in that we are not dealing dirvectly

with the interaclion of two species, More genevally the

model is a particular kind of birth and death process,

In the language of Queueing Thecory the problem of making a
probabilistic description of the content Z{t) of a
geographical area is known as Erlang's Problem for an

Infinite Collection. Erlang was specifically concerned with

the appiication to telephone exchanges and in this contoxt E(t)
is the number of calls in progress at time t. Since Queueing
Theory and its terminology are widely known 1t seems appropriate
to proceed with the development ot the theory in the queueing
theoretis context, not forgetting the wide range of applications
in other spheres ot activity, In the terminologyv of queueing
theory, "units” are¢ retfeired to as ‘clients" or "customers’,
Their "service time" is the time spent in the “service tacility"
or geographic area. The "input”™ to the "system" ¢onsists of a
description of the intervals of time separating the arrvivals

of successive customers/units at the service racility. A
principal oblecctive ot this report s a sigplitied exposition

of the probabilistic theory of intinite capacity service

systems that arce tormaily identical to the military model

discussed in the previons paragraphs.

A mathematical description of seirvice systems regnires a
specifiication in probabilistic teims, where apnroprmate, ot
the input, the service time, in some cases the "queneing
discipline” (the order in which constomers are seyved, tor
example), as well as o the muber of service points.  On the
basts ol these one makes probabilisiic statements abont how
long a t pical customer has to wairt. the lengtih ot the
uninterrupted perviods deving which the rtaciliry s kept buasy,

the interval or time between successive departures 1rom tie
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system, and so on. To these may be added Erlang's Problem,
which is also of particular interest to the designers of
supermarkets and doctors' waiting rooms, as well as to
those whose task it may be to protect shipping against
enemy submarines about which the only thing known is a
description of the input and cycle time in probabilistic

terms.

Erlang's Problem for a finite collection is rather intractable,
particularly where so-called exact finite time results are
concerned. These are required when one wants to make
statements about g(t), which it will be recalled is the
total number of units present at time t after the system
was initiated, rather than about how Eg(t) behaves in the
long run. It turns out, on the other hand, perhaps at first
sight surprisingly, that finite time results are available
for certain systems that offer infinite service potential

and that are, at the same time, reasonable models for
practical information about the upper limit that the system
can achieve. It is therefore of obvious practical value.
Before proceeding further it is advantageoﬁs to introduce

a fundamental notation of Queueing Theory1 The terminology
X/Y/N is used to denote a service system with N servers.
The units requiring service are supposed to arrive at time
intervals whose distribution is denoted bv X. If the
service facility is full, they wait. When they reach a
service point the time required to complete service has a
distribution specified by Y. The most commonly encountered
type of X and Y is the negative exponential distribution.
This is always denoted by the letter M, Another type of
frequent occurrence relates to the deterministic case,

and is always denoted by D. Thus M/D/1 denotes a single
server system in which arrivals are separated by time intervals
having a negative exponential distribution, and each customer
receives a fixed service time. In this report we are dealing
with systems that may be denoted by X/Y/a.
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Explicit time-dependent solutions of Erlang's Problem for
M/Y/e and for a special X/Y/w in which X is governed by
a time dependent. parameter, were given by Khintchine [Ref. 2].
Subsequently Takidcs [Ref. 3] gave a solution for X/M/e

where arrivals oc¢cur in a renewal process with arbitrary
inter-arrival distribution. The Takdcs solution is expressed
as a Laplace transtform. Subsequently it was discoverved
[Mirasol (Ref.4) Jthat the output of the M/Y/o system is
Poisson. This aroused considerable interest since an infinite
service system can be used to model delays in arrival at a
service point [see Kendall (Ref. 5), tor example]. That is to
say, one may imagine that when a customer arrives he is put
through an imaginary intinite server system before going to
the serving point, and this has the etfect of delaying him.
The output of the infinite server system then becomes the
input of the real service facility, and since queues with
Poisson input (essentially of M/Y type) are well understood,
Mirasol's discovery held out some promise ot throwing light

on the notoriously difficult delay problem. More recently
Vere Jones [Ref. 6] has shown that the output of an infinite

sequence of X/Y/o systems, each feeding the other, is Poisson.

With the exception of a hint in Kendall [Ref. 5], no investigator
seems to have exploited the fact that under suitable ncnditions
the customers entering an infinite service racility may be
thought of as flowing tLhrough it independently. This fact

can be used to simplify considerably the development of

the theory. It is the purpose or this report to demonstrate

how this can be done, and to make an application to the

waiting time problem for an interesting, incompletely
investigated queueing system in which service is geared to

demand.

~J




i

s 4

S AR A

,,n?ffﬁ‘h‘;ﬁﬁ c

i

S D

1. THE METHOD

We suppose that at time t =0 the infinite capacity service
system opens its doors, permitting service to begin on the n

customers who are waiting. First we give formulae for:

(a) The probability anm(t) that m of the

original n customers have been served
by time t. This is clearly independent
of subsequent arrivals who, because the
service facility is infinite, will flow

independently through the system.

(b) The probability density function bnm(t)

that the mth customer of the original n
has been served in the small time interval
(t, t+dt).

Let the probability density function (p.d.f.) of the service
time s of a customer be denoted by b(t). We make no

special demands on b(t) except that

[® -
Jo b(t) dt 1

and that its moments exist. We denote the distribution function
(d.f.) by B(t), i.e.




and the tail of the distribution by Bc(t), so that

B.(t) =1 - B(t).

The m customers to have been served by time t can be selected
in (g) ways and since the probability that any of the
original n has been served by time t is B(t), we have

immediately

m

@) = () [T [0 0. 0

To deal with bnm(t) we note that the ot customer who
has been served in (t, t+dt) can be chosen in n ways.
The p.d.f. of his service time is b(t). In addition we
require that m-1 out of the remaining n-~1 are served
before t. Thus

b_(t) =n (gj) [B(t)]m—l [Bc(t)]n-m b(t) . [Eq. 5]
Writing D for é% , it is then clear that
b_(t) = (2) [Bc(t)]n—m D[B(t)]m, [Eq. 6]

Now we consider arrivals that occur subsequently to t =0,
Again, because the service has infinite capacity, these can be
dealt with independently of the fate of the original n

customers in the system. We concern ourselves with

(a) the probability rnm(t) that during (0, t)




and

(b)

We denote

n arrivals take place, of which m have been
served before time t, (not necessarily in order

of arrival);

the associated probability density function qnm(t)

thatin (0,t) n arrivals take place, of which
the mth
(t, t+dt) (not necessarily in the order of

has been served in the small interval

arrival).

the p.d.f. of the intervals between arrivals by

a(t), which, as for b(t), we suppose to be a properly

behaved function with moments. We also write

A(t)
and

A (t)

Lrt a(s) ds.

0

1-A(t).

Given that t=0 is an arrival instant (one might suppose

that the latest of the customers waiting at t=0 arrived

at that moment) we clearly have

t
rlo(t) = J‘ a(s) Ac(t-s) Bc(t-s) ds, [Eq. 7]

and

ry,(t) =

a(s) Ac(t-s) B(t - s) ds. [Eq. 8]

oc'—_‘-D
ﬁ

10




Adding these we obtain, as might be expected, the probability

of exactly one arrival in the interval (0, t). The

explanation of Eqs. 7 and 8 is as follows. We suppose that

the one and only arrival occurs in the small time interval

(s, s+ds). The probability of this event is a(s) Ac(t—s) ds. ‘

In the remaining part of the interval, t-s, Eq. 7 requires

that the arrival is not served, [probability Bc(t— s)!, or
in Eq. 8, is served, before epoch t [probability B(t -s)].
Adding over all possible s completes the explanation.

Generalizing to rnm(l <ms<sn-1) we have

§

t

rnm(t) = a(s) B(t-s) r (t -s) ds + '

n-1, m-1

ot——’J

t
+ j; a(s) B_(t-s) Cooi,m (t -s) ds. [Eq. 9]

The explanation is again based on a first arrival in the
interval (s, s+ds). Either this arrival is served before
t or he is not. Invoking the independence of flow concept
we see in the first case that during (s, t), n-1. arrivals
must occur with m-1 services, and in the second, n-1
arrivals and m services. For m=0 and n we obtain

single integrals:

t
rno(t) = I a(s) Bc(t—s) -1, O(t—s) ds; (Eq. 10]

0

r_ (t)

nn

t
f a(s) B(t-s) r (t -s) ds. [Eq. 11]

0

n-1, n-1

11
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With the definitions

roo(t) Ac(t)

and

r (t)

nm

mn
o

for m > n, and either m or n negative,the validity of Eq. 9
can be extended to all m and n, thus including Egqs. 7, 8,
10 and 11.

Turning to the corresponding densities qnm(t) we use a
similar argument. This function has no meaning for m=0.

For m=1 we obtain:

t
q_nl(t) = j a(s) [b(t—s) rn—l, 0(t-s) +Bc(t—s)qn_1, 1 (t-s):l ds;
0

[Eq. 12]

t
qnm(t) = f a(s) [b(t-s) o1, m-1 (t-s)+BC(t—s) qn-l, m(t-s) +
0

+B(t - s)q (t-s)] ds; [Eq. 13]

n-1, m-1

for 2<m<n-1;

t

qnn(t) = j a(s) [b(t—s) n-1, n-1 (t_s)+B(t_S)qn-l,n—l(t_s)] ds.
0

[Eq. 14]

12




The explanation of Egs. 12, 13 and 14 is similar to that for
Egs. 9, 10 and 11. The first arrival occurs in (s, s +ds)
and we then have to consider whether or not he is the
customer to be served in (t, t+dt). In the case m=1
he either completes in (t, t+dt) or after t; in the

' case m=n he either completes in (t, t+dt) or before t.
For 2smsn-1 he may complete in (t, t+dt), before t

or after t. There are no other possibilities.

Again a suitable definition permits the validity of Eq. 13

to be extended to all m, n. This is

4 p(t) =0

for m=0 and m>n.

It will be noted that subject to suitable conditions these
formulae for the probabilities rom and densities q .~ are
valid for arbitrary arrival and service intervals of

recurrent type.

One can now turn to Erlang's Problem: that of writing down
the probability

pM () = pefe(t) = k| g0) =],

where it will be recalled that g(t) (t=0) is the non-negative,
integer-valued stochastic process that describes the number of
units in the system at time t after the process was initiated,
and N is the number of units present at t=0. There are

two ways of doing this and it will always be supposed that

at t=0 all services begin simultaneously, and an arrival

can be regarded as just having occurred.

P iy
-




First consider the case O0sks<N. It is then possible to achieve
the condition g(t) =k without any arrivals during (0, t).

The contribution to p(ﬁ)(t) is thus Ac(t)aN,N_k(t). When
arrivals do occur it is still possible that the k remaining
belong to the original N. The condition is that all n
arrivals (n=21) are served before t. The contribution

to (N)(t) is thus ay k(1-,)2‘ r (t).
2 nz1

Now consider that all but one of the arrivals in (0, t) have
been served before t. Then k-1 of the original customers
must remain, and the contribution to (N)(t) becomes

3N, N-k+1 r?zl Th, n-1 (t). Generalizing, if s customers: out

of the new arrivals remain at t, then k-s originals must

remain too. In this case we have a contribution of

N, Nkt (V) Z ¢

(t) while O0s<s<k. This argument also
n, n-s

depends on the S independent flow concept. We have finally

o () =A(6) ay y  (¥) +2 ay, Nokets () T P ()

nzmax(1,s) "> 7S
[Eq. 15]
for O0sk sN. With the definition roo(t) = Ac(t) note that

the first term in Eq. 15 can be included in the sum. Thus

Eq. 15 becomes

™M=

p(ﬁ)(t) = l\ N k+S(t) E r (t) . [Eq. 15a]

n, n-s
s= nzs 2

When k 2N+1, arrivals must take place. For simplicity
consider k= N+1. If none of the original N has been

served before t then exactly one subsequent arrival must be

14
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present at time +t. The contribution to (N) (t) is then

() Z (t) v

a t r t). Thus

NO n>s+l n, n~s-1
Mgy = F a(6) T » (t) [Eq. 16]
N+1 5=0 Ns nzstl n, n-s-1

It is not difficult to extend the argument to obtain the general

formula
¢
oMy = T a (¢) T () [Eq. 17]
N+k =0 Ns n2 s+k n, n-s-k ’ .
for k=21.
Noting from the accepted definition of binomial coefficients *
that

for m>n and negative n or m, we then have automatically

anm(t) =0

for such values of m and n, and thus the validity of Eq. 15a
can be extended to all k(20). This provides the solution to
Erlang's Problem in some generality. The argument, though
correct, is rather dull and the formulae on their own are not

very exciting.

15




A more aestheticélly attractive formulation, which emphasizes
the independence of flow concept, leads to the following set

of equations for p(ﬁ)(t):

p(M (¢) =ag, (£) A_(¢) + iz:z ax. an () u["t a(s) p{1)(t-s) ds,
. 0
[Eq. 18]
for 0 <k sN;
pgl){(t) = éo ay, o(t) jt a(s) plﬂl,)!(t—s) ds, [Eq. 19]

o]

for O0<k<e,

We consider first Eq. 18. Here the number of units present at
time t is at most equal to N, the number originally present.

There may have been no arrivals, in which case provision has to

g A

HE

be made for the right number of departures from among the

initial N. This accounts for the first term on the ri ht

&

hand side. The second term deals with the case where

it ey
SPEE

arrivals have taken place. We now argue that because the
service facility has infinite capacity, the first arrival
creates a situation in which a second infinite service facility
is initiated with a single unit present. We then have to
provide that the sum of the number remaining at time t out
of the initial batch of N, plus the number remaining in the

E second system initiated with a single unit at time s, has

the correct value.

When the number present at time t exceeds the initial number N,
arrivals have to occur. The explanation of the single term on
the rignt hand side of Eq. 19 is then identical with that of

the second term on the right hand side of Eq. 18.

8
LA
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A number of steps can be taken to verify the correctness of
these general formulations of the solution of Erlang's Problem
for an infinite service facility. One can, for instance,

show that 2 p(ﬁ)==1, as it should, for all N=x=1. 1In
addition ongzgan demonstrate the equivalence of Eq. 15 with
Egs. 17, 18 and 19 by direct substitution. It would be

tedious to continue in full generality and we shall therefore
proceed in the framework of particular systems.

| L

It seems worth pointing out that the theory permits one

to handle units that require different grades of service.
Suppose for example that the irnput consists of a variety of
units,some having inter-arrival interval density function al(t),
others a,(t), and so on, and that service on the a,(L) stream
has density function b, (t), ba(t) on the a,(t) stream, etc.
Provided that t=0 marks an arrival and beginning of service
epoch for each stream of units, the different types can be
allowed to flow independently through the infinite system.

The number £(t) of units present at time t is then, with

obvious notation, given by

g(t) = g,(t) + g, (t) + ......

and Pr[g(t) = n] is the convolution of the individual
probabilities given by the theory. Thus one can with the same
theory describe, for example. a mixture of slow and fast ships

crossing an area.




A number of steps can be taken to verify the correctness of
these general formulations of the solution of Erlang's Problem
for an infinite service facility. One can, for instance,

show that 3 p(ﬂ) =1, as it should, for all Nz1. In
k=0
addition one can demonstrate the equivalence of Eq. 15 with

Eqs. 17, 18 and 19 by direct substitution. Tt would be
tedious to continue in full generality and we shall therefore

proceed in the framework of particular systems.

It seems worth pointing out that the theory permits one

E
:

to handle units that require different grades of service.
Suppose for example that the input consists of a variety of

units,some having inter-arrival interval density fnnction a;(t),

e e e B D

others a,(t), and so on, and that service on the a,(t) stream

has density function b,(t), b,(t) on the a,(t) stream, etc.

-
e

oy

Provided that t=0 marks an arrival and beginning of service

it

epoch for each stream of units, the different types can be
& allowed to flow independently through the infinite system.
The number E(t) of units present at time t is then, with

obvious notation, given by

(L) = €,(t) + E,(t) + ...un.

and Pr[@{t) = n] is the convolution of the individual
prcbabilities given by the theory. Thus one can with the same
theory describe, for example, a mixture of slow and fast ships

crossing an area.
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2. THE SYSTEM M/Y/e

2.1 Erlang}s Problem

This is the system for which the solution of Erlang's Problem
was first furnished by Khintchine [Ref. 2], whose results are
given'’here. The arrival pattern is governed by a negative

exponential distribution with parameter ). That is to say

a(t) = re MY, [Eq. 20]
and
A(E) = 1-e AE
(Eq. 21]
"Xt

Ac(t) = e .

Y denotes a general service time distribution whose p.d.f. and
distribution function will continue to be dencted by b(t), B(t).
The simplest approach to the probabilities p(ﬁ)(t) is furnished
in this case by the functions rnm(t) [c.f. Eqs. 9, 10 and 11],
Clearly,

t
rlo(t) = 3 tr e~ e—X(t-S) Bc(t-s) ds
°

t
= 2 e Mt Lr Bc(t-s) ds
0

=3 e M g(v), [Eq. 22]
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' where
t
g(t) = f B (s) ds. [Eq. 23]
[
§ Similarly,
: t s oa(t-
¢ ry = A Lr e S o A{(t-s) B(t-s) ds
=13 e M z(v), [Eq. 24]
where
rt
£f(t) = J B(s) ds. [Eq. 25]
[
It will be noticed that f(t)+g(t) = t. [Eq. 25a]
Then it is easy to show inductively that
m n-m
r (t) = R e M £() g (%) [Eq. 26]
nm
m! (n-m)!
and that
n =)}t n-m t .
g (v) = et e (B plen(e)] [Eq. 27]
nm m! (n-m)!
where D = i%. Then from Egqs. 15 and 17 we obtain
m
k N N-k k [kg(t)]
-k+m -m
=max(0,k-N)
[Eq. 28]

15




for all k20, a weighted combination of compound Poisson terms
with time-dependent parameter )\g(t). If we put N=1 we have,
omitting arguments,

p(:) = e 3, [Eq. 29a]
p(:) = e-)\g [BC+B .(.Lg.l“ :|, [Eq. 29b]
1 - 2
p(2) — o-\E [BC£}§2 + B L%%l_], [Eq. 29c¢]
n-1 n
p(rll) R Y-+ [Bc (g . LAEl_] . [Eq. 29d]
(n-1) ¢! n!
Clearly 2 p(l) = 1.
nzC n
The special forms of Egqs. 18 and 19 for N=1 are, since
a(t) = )‘e')‘t:
(1) _ -2t at Y oas (1)
P o = e B+ )\B e J‘ e’ p 47 (s) ds; [Eq. 30a]
0
t
p(i) = "Mt B, *AB, e Mt 'J' es p(g)(s)ds+
o
At PP s (1)
+ 3B e I e p') (s) ds; [Eq. 30b]

*]

t t
pl(cﬂ = AB, e~At I ehs p(i)(s)ds+)\B e~ Mt I ehs pf{li(s) ds.
0 0

[Eq. 30c]

20




it

Substituting Eqs. 29a in the integral in Eq. 30a gives

t t
L[ eXS-Xg(s) B(s) ds = Lr ekf(s) df(s) = % [ekf(t)'-l]
0

whence it is clear that Eq. 30a is satisfied by Eq. 29a. .
A

Similarly, in the general case. The coefficient of ABe " in
Eq. .30c is
k k+1
5 o [Xg(S)] [Xg(S)]
I e>‘ S Bc(s) =T + B(s) W ds
0
k+
" [kg(S)] !
A € (k+1)!
0
r k+1 b
L (e [re(s) |
Y (k+1) !
0
+
[xg(t)]k !
- 1 _af(t)
Y © (k+1) ! ’

Thus the right hand side of Eq. 30c becomes

1

K K+
-\g QLgl -\g
B, e K] +Be %iili; )

(1)

which is Pr+] °
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2.2 The Qutput

Description of the output process from an infinite service
facility can be quite general, as we shall now briefly
indicate. Let n(t) be the number output from an

infinite service facility in the interval (0, t) and let

WD (e) = pr [n(t) =k | g0) = n], [Eq. 31]

on the assumption that t=0 corresponds both to the beginning
of an arrival interval and to the beginning of service of all

units. Then for k=0 we have either

£t .
v(g)(t) = Ac(t) ano(t)*'ano(t) J’ a(s) v(i)(t-s) ds , [Eq. 32]
0

or

A (6) = A (6) a o(6) +a o (6) T ro(6). [Eq. 33]

m21 g

For the M/Y/o system with a(t) = Xe—XE Eq. 33 gives

D (e) = 82(e) MO [Eq. 34]
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Then

-

t t
lf a(t-s) v(g)(s) ds = Xe-kt Lr ehs Bc(s) e"kf(s) ds
0

o

: t
L _ et J‘ Me(8) 4o(s)
] 0

= e-xt(ekg(t)-l),

and it is clear that Eq. 32 is satisfied. The argument leading
to Egqs. 32 and 33 is that none of the original n must have
been served in (0, t),nor must any of the subsequent arrivals.
In the case of formulation by Eq. 32 it is argued that the

first arrival initiates the activity of a second infinite
service facility. The reader will readily verify that a general

formulation on the lines of Eq. 32 gives:

k t
A0 = A0 ay (0 ¥ T a0 [7ates) W{1) (o) as,
i= o

[Eq. 35a]
for k<nj; and
() ey = 7 & [ att-s) V1) (s) a [Eq. 35b]
Yk T, Oni -8} Vk-q 18) @S 4 .
0
for k>n.
In the spirit of Fq. 33 we have
V(E)(t) = A (t) a, (t)+ gf a .(t) Z rokei(t),
€ n i=0 "™ memax(1,k-i) ™77
[Eq. 36a]
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for k<nj; and

W) = T a0) T
i=0

ni Tm, k-i ? [Eq. 36b]
mzk-i ?

for k >n,

For the system M/Y/e these reduce to

. k-1
min(k,n) AE(t)
V(E)(t) - e.")»f(t) ‘§0 ani(t) [ (k_i.)-! [Eq. 37]

for all k > 0. Thus, as for the state probabilities, the number

output from the system in (0, t) has for distribution a weighted

Poisson terms, but with time dependent parameter

essentially the finding of Mirasol [Ref. 4].

sum of compound
Af(t). This is

24




T

Y

i

3. THE SYSTEM X/M/e

3.1 Erlang's Problem

Although the integral equation formulation for the output and
state process seems more elegant it is not clear that it is as
suggestive of the solutions as the alternative expressed in terms
of the functions rnm(t), at least so far as the system M/Y/s

is concerned. The reverse is the case for the system X/M/e
and, by contrast with M/Y/e, it seems expedient to resort to

the Laplace transformation. The density function ' a(t) is now

general, whereas b(t) has the specific form ue_ut.

The solution of Erlang's Problem has been published, with misprints,
by Takics [Ref. 3]. It requires much algebra, which it would

be tedious to reproduce. We content ourselves with a statement

of the result for E(0)=1 together with an indication of a method

for its derivation.

We drop the superscript on p(E)(t), it now being understood

that it is unity. We also write

(@) = [T e p (e ar
0

for the Laplace transform of pk(t), and further introduce the notation

o (z) = Jm (2T a(e) at, )

0
8, (2) = l-ak(Z), | 0 [Eq. 38]
fk(z) = Lr. e-(z-%ku)t Ac(t) dt;

0
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and henceforward drop explicit reference to the argument =z.
Then, for k20,

: . 0.0 ... £ L.
a (k+1) (oyi il O—1+i Tk+i

= [Eq. 39]
i=0 6°6x...6k+i 2

in which when k=0, the numerator is f, for i=0 and f,

for i1=1. The generating function

m(x) = Z X
* k=0 Tk

can be written

i
g (1=x)7 0yogeeety g4y Fiqg

i20 S8y e by

. [Eq. 40]

Putting x=1 gives

fO

N =

which implies that T pk(t) =1, as it should.
k>0

The proof of Eq. 39 is carried out most expeditiously by
introducing a shift operator E that is such that it increases
the argument 2z of the various Laplace transforms by an

amount . Thus

& = B g [Eq. 41]
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for example. Later it will be convenient also to use a backward

difference operator ¢ wnich is defined by

v=1-E. [Eq. 42]
We notice also that the interpretation of expressions like
(1-g,E)7! is
1+aq E+g, E(agE) + oy E(8E) (@gE) + .venn

=1+a,E+ooa, E2ta,a o E°H ...., [Eq. 43]
Finally we observe the easily verified identity

x 1 v = 1 x [E 44]

o (I-x,E) Yo ~— Ti-x E) ~° Yor o

Care has to be eXercised in maintaining the proper order of the

operators, proceeding systematically from right to left.

Now from Eq. 18 with N=1 and k=1 we bave

t
polt) = (1-e74) A () +(1-e7) [ a(s) py(t-s) ds,
]

which leads upon Laplace transformation to

r
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We write

F = 80 ™
[Eq. 46]
G, = f, + Fy .
Then from Eq. 45
G°=f°+a,° VG,
or -
Replacing V by 1-E gives
(5Q+UOE)G°=f°:
or
8 o _ %o
(1+-6—°-E)G°—T;’
i.e.
8o -1 £y
=(1+4E) &= . :
o (o) 52 5a. 47

Next we turn to the fcrmula for pt(t)' This is

t t
pt(t)==e'utAc(t)-+(1-e'“t)J‘ a(t-s)pi(s)+e-uttr a(t-s)p,(s) ds,
(o]
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which gives

m =EGy+ 9F,

or

Fi =0 EGy+ a5 9F, [Eq. 48]
and hence
oy -1 %o \
= - E L]
F, (1 + 5 E) (3: EGgy) - (Eq. 49]
From Eq. 47
a, 1 f,
EG,= (14-3: E) T
so that
% o -1 a4 oy -1 f1
¥ = — — (1 + = E> —-]
: F, (1'+5° E) [ao ( 5, 5,
%-i::' G'D -1 O.o -1 ao fl
iz _ o + 0 E>
(1+ 5, ) (1 5, 5, 8,

o (10 528) (5) (7a. 50]

AT

For k=22,

SR i s

t t
p () =e™HE f a(t-s) p,_,(s)ds + (1-e™%) I a(t-s) p,(s) ds
(o] ! (o]

[Eq. 51]
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which leads to

o
[+ F (P ] [Ea. 52]
We are naturally led to conjecture that

8, -(k+1) fes0 ...  f
F ={1+— E - - .
k ( 8, ) 808, -8, [Eq. 53]

_k a'lc‘z...ﬂ](—l fk

61 6162...61(

So that the right hand side of Eq. 42 becomes

(1 &, >— (1 ®q >—k Boly ey fk

b By oo by

after using an identity of the type of Eq. 44, which can easily be
verified. This confirms Eq. 53 for k=1 and leads directly to
Eq. 39 for k>1 upon expansion and correct interpretation of’

the binomial operator. From Eq. 47

8, -1 fo
Goﬂ°=Fo=—f°+<l+—6-; E) -é-;
fo 8o0&y aeo, fp
- _fo+ -6- - * o e ’
0 8, 8, 606162
whence
~ fo f1 . 8, fy
Mo = By T BG8, | B8 8 Tttt
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which confirms the special form of Eq. 39 for k=0. This
result can be cross-checked for the system M/M/e by putting
b(t) = ue‘ut in Eq. 29a, taking the Laplace transform,and

then reproducing the above result for the particular case

a(t) = Xe—xt.

3.2 The Output

The output from X/M/e can be dealt with in similar fashion.
Let n(t) be the number of units processed by the system in (0,t)
and recall the definition Eq. 31 with n=1, that

vi(8) = Pr [n(t)= k| g(0) = 1] .

We use Qk(z) for the Laplace transform of vk(t) and

subsequently omit the argument. In addition we write

We shall show that

Hy = (1-a, ) l:g,o fl]. [Eq. 55]

and that for k21

1 K 1
Hy = [1—%!3 . aov] [1-%13 f°]- [Eq. 56]

This can be more explicitly, but heavily, expressed in various

ways. It seems best to leave the formula in symbolic form, though
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we shall apply the check of showing that it leads to

Z (t) = 1.
k>0 VR

From Eq. 35a we have, when n=1 and k=0,

t
vo(t) = e HE I:Ac(t) +J‘ a(t-s) vy(s) ds],

0

which gives
QO =] E<f° + L 3 @o)’ or

H, = a, lil(f0 + Ho).
Hence
(1-a,E)Hy = ag Efg= 04 f,.
This is Eq. 55. For k=1 we have
t

t
v, (t) =(1-e-ut)Ac(t)+( l-e_“t)j a(t-s)vo(s)ds+e—utf a(t-s)v,(s) ds
)

or

= 1o f

32




Hence

= 1 . ——1——
Hy S T=oE " % [1-%13 fo:l’

which is Eq. 58 with k=1. In general

t t
vk(t) = (l-e-ut) dr a(t-s)vk_l(s)ds+e-“tj a(t-s)vk(s) ds,
o )

or

g E¥et,
Ty T AT S SR T W3

(l-c,oE) Hk = Qo V Hk-l ,

which plainly leads to Eq. 56.

As a check we have:

eSS R T R

g 1 1 1
> H, =H_+ .0 . f
k= "0 Tog e %" " 1 - T-a E 'O
& k20 = T- gt 0o ¥
t £
-0
7, —H + 1 —
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Hence

f f f f
1 0 1 1 0 o1
Z‘H=__'G.f+_—— = m—— _—— N, -
k>0 k 1-a,E of"r " &, 61 1-g,E 18, 1 61,
= ———L—— 1 E fo
—-l-aoE qo[-al]b—o-
f
L [r-e] - 32
I cmee———— 1_ E .
1-ga,E %o 8
®o
=z
since f = 8,/z.

Recalling Eq. 54 this means that

z (t)=13
k>0 Vi

as it should.

The author believes that the results in this chapter have not

been published before.
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4. THE THEORY OF A CONSTANT ATTRITION ANTISUBMARINE BARRIER

Description in Terms of a Single Server Queueing System
in which the Rate of Service depends on the Number in the

Queue .

4.1 Introductory

An antisubmarine model to which the theory given here is
applicable concerns the situation in which all enemy submarines
proceeding from base to operational area are constrained by

geographical or other considerations to transit a region in

which an antisubmarine barrier is placed. It is supposed
that the barrier can exercise constant destructive power per
transit. This means that if the enemy force contains n
submarines at time +t, the probability of a submarine loss
in the small time interval (t, t+dt) is uyndt. This factor
coupled with the constant probability differential ) of
new conStruction accounts for the fluctuations in n. The
same model can be used to describe air defence situations

(raiders attacked by missile defence).

A novel application of this model in the non-military field

of congestion theory will be defined in the next section and
the analysis will be prosecuted in terms of this model. The
terminology is not, in fact, of great importance, for it is the
formal similarity of the general model to that. of an infinite
service system that permits one to borrow from that theory,
thereby achieving a simplicity in development that would

be difficult to obtain by direct methods. In Sect., 4.3 we will

return to a discussion of the antisubmarine model.

Research in the theory of congestion is at present embodied in

several books and perhaps about 1500 research papers, the

3
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majority of which have been publisned since 1950. With relatively
few exceptions these studies have been made of systems in which
the service and arrival processes are independent. Such systems
suffer from the operational defect that when the traffic
intensity, measured by the ratio of mean arrival rate to mean
service rate, approaches unity the queue tends to elongate

and waiting times of the clients become excessive. On the

other hand, at low traffic intensities the service facility
tends to suffer long periods of idleness. The obvious remedy
for this unsatisfactory state of affairs, which seems to be
implemented in practice, is to arrange, as far as possible,

for service to be matched to demand. (An alternative might be
to match demand to service.) Yet, curiously enough, an almost
negligible amount of effort has been expended on assessing the
effect of this by analyzing appropriate models. This is all

the more curious at the present time, in that the effective
operation of computer time-sharing systems may be said to

depend on the implementation of systems of this nature.

4.2 Fundamental Model

A series of papers by the author and Hadidi [Refs. 7 to 10]
have expounded the theoretical and numerical analysis of a
system in which the allocation of service time to a given
customer is determined by the interval of time between the
epochs of arrival of that custcomer and his predecessor;
substantial practical system improvements are demonstrated.
The same authors have in addition conducted research on
another system in which the instantaneous rate of service

depends on the number in the queue [Refs. 11 and 127.

As we shall now explain, the analysis of this latter model is

facilitated by analogy with an infinite capacity service facility.

The system under consideration can be explained as follows.
A simple M/M/1 system has a single server and is characterized
by independent negative exponential distributions of arrival and

service with mean rates )\ and y respectively. We suppose

(a3
(=)




i

e RN e

aErE <y

now that the service parameter is o, when there are n

in the queue and in particular that

cn=(n+1)u.

This model then supposes that the length of time required
to serve a given customer depends probabilistically on the
number of arrivals during his service time. A large number
waiting is characterized by rapid service. 1iIn what follows
we shall further suppose that arrivals form a Poisson

stream with parameter ) and that there is just one server.

Let E{(t) be the number present in the system (i.e. in the

queue and in service) at time t, and write

p (t) = Pr [€(t) = n]. [Eq. 57]
By a familiar argument, which links E(t +dt) with E(t)
via the events that can happen in the small time interval
(t, t+dt), we find that pn(t) is described by the sct of
equations

\
Po(t) + aApo(t) = up,(t)
p, (t) + (A+u) p,(t) = Apo(t) + 2up,(t) 5
[Eq. 58]

p (t) + (A+np) p (t) =ap _ (t)+(ntl) up , (t)

where dots denote differentiation with respect to time. It

will be recognized that these equations are identical with the
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set that describes pn(t) for the infinite service system
M/M/@. Thus p_(t) has the same value for both systems.
There is no question of multiplicative constants,since

in both cases 2 pn(t)==1, The results given in Sect. 2.1
for Erlang's prgblem with b(t) = ue_ut are therefore

applicable.

We shall now show how to deal with the problem of the
waiting time of a customer who arrives when the system has
been in operation long enough to have "settlied down" to a
state of statistical equilibrinm. This means that the number
in the system is described by probabilities En’ which are

equal to 1lim pn(t) and have the value
t e

'5 - e_p _p._ . [qu 59]

If we define waiting time to include the customer's own service
time and specify a first-come, first-served, queue discipline,
then it follows that a customer who arrives to find n already
in the system has to wait during the residual service time

of the customer being served, plus the service times of

the n-1 in front of him, plus his own service time. The

fact that the service time distribution is composed of

negative exponentially distributed components means that
residual service time has the same distributior as complete
service time. Thus the new customer has to wait for a time
that has the distribution of the sum of nt+l complete service

times.

This leads us to enquire into the form of the joint probability
and density Ynm(t) that, starting with n, it takes time t
to output m successive customers. The waiting time of the
customer who arrives to find n in the system is then governed

by Yn+1,n+1(t)’ and the steady-state density function h(w)
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of the waiting time w of a new arrival, however many he
finds, is

n
= ¢ ® 2
h(w) = e ;EO nT Yoy, ner(¥) - ze GO

We now proceed to find ynm(t) by invoking the fact that the
o, = (n+1)y system is formally identical with M/M/e. 1In
this infinite system ynm(t) is to be interpreted as
referring to the time t required to output m customers,
no matter in which order, when there are initially n present.
If it is assumed that at t=0, service begins on all

n customers (the shop opens), the problem can be solved

for the system M/Y/o in a fashion similar to that employed
in Sect. 2.2. This we shall do. We recall that n(t)

is the number output from M/Y/e in (0, t) and that,

by Eq. 31,

v(E)(t) = Pr [n(t) =k | g(0) = n] . [Eq. 61]

Let Tnm be the time to the completion of service of the mth
customer, given that £g(0) = n. Then evidently,

Pr [Tnm>t:\ = Pr [n(t) <m| g(0) = n]

=7 V(E)(t) . [Eq. 62]

Equation 62 determines Ynm(t)’ since
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From Eqs. 37 and 4 we have, for k sn,

xf(t)]k—i

(k-i)!

K . :
WM (g) = AE(E) z (2) B(e) B2H(¢) [
i=
_ _=2f(t) x xf o
= ™ M( C(k){e)‘ (t)[Bc(t) + x B(t)] }, [Eq. 63]

where C(§)< > means the coefficient of xk in < > .

Thus

n e—)\f(t) zf n dz
( )(t) =T ‘Jli e)\ (t) [Bc(t)+zB(t):] ;E‘_T_T ’

where T is a contour in the 2z plane enclosing z=0. Then

n
it ] - S [ e DGO g
i -z z

T

provided that T excludes =z=1. Hence

n-1

Hc(t)==J; h(s)ds = e ® T TE:TYT prfT, >t ]

nzl

[Bc(t)+z B(t)]dz

z(1 - z)

[Eq. 65]

-p-Af(t
_e pzﬂ);.( ) fcxp )\zf(t)‘*'p[_BC(t)'*_ZB(t)]//z
T
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Equation 65 gives the tail of the waiting time distribution for

the single server "o, = (n+1)u" queueing system when b(*)

is replaced by ue_ut. The result is delivered much more
expeditiously by utilizing the infinite service system
analogy than by any direct approach that we have seen.

[See Hadidi (Ref. 12) where Eq. 67 is obtained by complicaied
analytical methods.]

Hc(t) can be expressed explicitly in terms of modified Bessel
functions of the first kind by expressing Eq. 65 in terms of the

well-known contour integral representations of the latter. Thus
one obtains

-g- 3(n+1) — _
H (t) =e n B.(t) I, (2 JEn ) + ZO (%’1) I (2 vEn)Y, [Eq. 66 ]
na
where
g = Af(t)
n= ch(t).

Similarly, the density function is given by

r

h(t) =e™5M ([AB(£)B () +b(£) (1 +pB(£))] To(2 JEn) +

wf=

1
pone@ ro@neml, s

which may be evaluated either directly from the contour integral
obtained from Eq. 65 by differentiation, or by differentiating

Eq. 66 and utilizing known Bessel function relations.
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Equation 65 can be checked by setting t=0. HC(O) should have
the value unity. Now f£{0) =0, BC(O)==1, B(0) =0. Hence

—-— p ; -
- e o/z dz
HC(O) 2ni J; € z(1-z

= 1 p§ 46
2ni f.e ERC
,rl

by an obvioas transformation.

This is clearly unity. Equation 66 may also be checked direculy

in the sare way,
An explicit treatment of some analytical and practical aspects

of the cn==(n+1)u single-server system can be found in Hadidi

and Conolly [Ref. 11].

4.3 ASW Application

The interpretation of this result will now be made in the
context of the antisubmarine model referred to in Sect. 4.1,
in which all enemy submarines proceeding to and from their
operational area are obliged to transit an antisubmarine

barrier that has constant destructive power per transit.

The commander who asks how long it will take to destroy as
many submarines as the enemy now possesses can be answered by
using the fact that the distribution of the time is 1-Hc(t).
This is the interpretation of the single-server waiting time
result. Note that unless 3 is reduced to zero the enemy

is still likely to possess submarines even when a number

equal to his present strength has been destroyed.




A cognate question is: "How long before I first reduce the
enemy's present strength to zero?". This is of interest to
both offence and defence. More generally it can be framed

in terms of a reduction from the present level to some other
prescribed non-zero level. Such questions are answered in the
terminology of stochastic processes by consideration of the
distributions of "first passage times'". In congestion theory
the interval of time from the epoch at which one client first

occupies the system until for the first time thereafter it

becomes empty is described as a "busy period"”, and one says
that in this time the system has made a first passage from
unity to zero. Let k(t) be the density function of a busy
period for a system in which arrivals and services have
negative exponential characteristics. Then the time required
for a first passage from N to n (N>n) has density
function k(N’n)(t), the bracket superscript denoting
convolution. A congestion model with negative exponential
arrivals corresponds to an antisubmarine barrier model with

time-independent building rate.

The writer has analyzed the problem of the busy period for
the M/Y/e congestion system, and by analogy this is applicable

with negative exponential service time to the karrier model in

the sense mentioned above. The result may be expressed as
follows.
Let
-ut
b(t) = ye W ’
rt
B(t) = J b(s) ds,
)
rt
f(t) = J B(s) ds.
0
Let
h(x, t) = e xE(t) !,

&

43




e IR . ., .

where x is some real number, and let h(n)(x,'t) be the n-fold

convolution of h(x, t) with itself (with respect to t).

Moreover, let

h(n)(x,tﬂ =3 x™n (t).

nm
man
n
Then if D" = dn
dt
_)\t
n>0

This result appears to be new. 1Its proof is given in Appendix A.

In terms of the model of units in a geougraphical area the
functions Ynm(t) give information on the time required to
output m wunits,given that n are present at a certain
moment. If the units are merchant ships carrying strategic

material such information seems logistically pertinent..
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APPENDIX A

THE BUSY PERIOD FOR THE INFINITE CAPACITY
SERVICE SYSTEM M/G/e

In the terminology of Queuing Theory a busy period (B.P.) begins
when the service facility ceases to be idle, and it continues

until, for the first time thereafter, it becomes idle again.

MR

4 An infinite capacity system is supposed to be supplied with an

i B

infinite number of servers. Immediately before a B,P. they
are all idle. At the beginning of the B.P. an arrival occurs
and immediately begins to be served. The B.P. continues until

once again all servers are idle, It is hardly necessary to

add that since the number of servers is supposed infinite not
’ : all servers will be continuously occupied during a B.P.
; as here defined. Let n(T) be the number of customers
served during a B.P. that begins at time +t=0 and terminates
F at t=T. We are primarily concerned in this paper with

the joint probability
k (t)dt = Pr'[:t<T<t+dt, n(T) = n] : [Eq. A.1]

The M/G/e system is characterized by an arrival pattern that
forms a Poisson stream with time-independent parameter ).
Thus interarrival intervals have p.d.f. Xe_xt. A service
period initiated by any one of the infinite number of servers
is supposed to have a proper p.d.f. b(t) and a distribution
function denoted by B(t), such that B(«) =1, The duration

of a service is independent of the arrival stream.

We also introduce the function

t
; £(t) = f B(s) ds, [Eq. A.2]
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and a generating function h(x, t) defined by

h(x, t) = exp[)\xf(t)jl -1, [Eq. A.3]

where x can be taken to be a real variable restricted as
necessary to ensure convergence. The commonly accepted
notation p(t)¥*q(t) will be used for the convolution of

two functions, viz.

rt
p(t)*q(t) = J p(s) a(t-s) ds,
o]

and p(n)(t) will denote the n-fold convolution of p(t)

with itself, viz.

oM (1) = Dy p(v),

with the convention that p(l)(t) =p(t). Then convolution of
h(x, t) with itself and with respect to t produces a higher
order generating function h(n)(x,td, which, when expanded
in ascen&ing powers of x has coefficients that will be

denoted by hnm(t), Thus

h™(x, 6) = T h_(¢) 5", [Eq. A.da]
m>n

and we observe then from Eq. A.3 that

hlm(c)z [xf(t)]m/;; 0 [Eq. A.4b]
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In the following development it will siiplify writing to replace
expressions like d" p(t)/dt" by D" p(t). In general when

there is no ambiguity we shall omit arguments.

The objective of the paper is to prove the result

At ' 3 +1 _n+1
- [Dz(hln)-D (hy ) +eeeeat(2)™ ! D" ()

€

k (t) =
[Eq. A.5]

The proof will proceed on the following lines. Suppose that
customers leaving the infinite service system are labelled

in the order of their departure (1, 2, 3, ... n, ...). This
sequence is a permutation of their order of arrival. We
suppose that at t=0 a B.P. begins and consider the event En
that the customer labelled n has been served in (t, t+dt)
leaving the system empty. There are two mutually exclusive
ways in which En can occur: either it is the termination
of the busy period beginning at t =0; or there may intervene
one or more idle periods before t. We evaluate the
unconditional probability of occurrence of En’ and the
probability of En given the intervention of one or more
idle periods; kn(t)dt is then the difference between these

quantities.

We first require two lemmata.

Lemma 1. It is supposed that the system is empty at t =0.

Let rn(t) be the probability that exactly n arrivals take
place during (0, t) and that all of them, and no more, have

been served before t. Then

AUy [Eq. A.6]

rn(t) = e in

Proof. Consider first rl(t). Let the first and only arrival

occur at epoch u. He has to have been served before the
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termination of the remainder of the interval, which has

length t -u. Then

t
r,(t) = 2 f e™M M=) i uy du
o]
= e M g(r) = et hl,l(t) ' [Eq. A.7]

Now suppose that Eq. A.6 holds for all n, and consider
rn+1(t). If again the first arrival occurs at epoch u,

then during ¢t -u

(a) this customer must have been served,

(b) independently, n further customers have

arrived and been served.

The fact that we have an infinite system enables us to make
independent arrangements for the first arrival and to separate
his channel from the system as long as it is occupied. Thus
at epoch u the initial conditions of the lemma are reoroduced

and we have

r

t
- o LI .
n+1(t) = ) j e B(t -~ u) rn(t-—u) du
0

n+l1

t .
j‘ e M B(t - u) e—X(t-u) £t - u) du
)

n!
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by Eqs. A.6 and A.4b

n+1 t
A At Lr £ D(f) du

n!
0

nt+1
- e-xt !%f!
n+1)!

-\t
© " Ry a1

Bl R T .., feick LagE Py

This completes the proof of Eq. A.6.

Lemma 2. Let t=0 be the Beginning of a B.P. Let T be
the epoch at which the nth service was completed, 1ot i
necessarily in order of arrival and not necessarily without
the intervention of one or more idle periods in the service
facility, and with an empty system immediately after Tn'

Let

vn(t) dt Pr(t<Tn<t+dt).

Then

€

vn(t) = D2 (h, ). [Eq. A.8]

1,n

(Note that, vn(t) is the p.d.f. of the event E_ referred

to earlier.

Proof. This is again inductive. To deal with vt(t) we

require no arrivals in (0, t) and the completion of service
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of the original customer in (t, t+dt). Thus

v,(£) = 7 p(t)

e~ M D2(f)
e Mt o
- N D (hl;l) ° [Eq" A°9:|

Now consider v If it is the original customer who has

nt+1’
been served in (t, t +dt) we have a contribution of amount

b(t) r_(t) = D(B) e A h

1n

to by Eq. A.6 and the separation of channels concept

v ’
used gzlthe proof of Lemma 1. If the original customer has
been served before t [probability B(t)] we bring in a first
arrival at epoch t=u, which, since the original arrivel
passes independently through the system, reproduces the

condition at t=0., Thus

(t) = e A D(B) h, +)B ‘ e ME-1) oy g [Eq. A.10]
Ynt1'\Y T € in " A ’ n : Q. 2. 10]
(o]

By Eq. A.8 this gives

v (8) = e~ M [hln D(B) + B D(h_ )

3t
e !/ D(hln B)
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n!

n
= -(-ﬁ_'_—lw e-)‘t D(fn B)
-\t
= £ 3
A R (hl,n+1)'

This proves Eq. A.S8.

To prove the main result [Eq. A.5] we again suppose the
conditions of Lemma 2 and, recalling earlier statements, observe
that

'_'
PrLt<Tn<t+dt:| = Pr[t<Tn<t+dt, no idle periods]
before t

+ Pr-l:t <T <t+dt, at least one idle] H
n .
period before t

[Eq. A.11]

i.e. that

vn(t) = kn(t) + ¢, (t), [Eq. A.12]

where Ln(t) refers to the second term on the right-hand side
of Eq. A.11. Knowing Vo if we can determine Lo then we
shall have obtained kn' Suppozﬁ the first idle period occurs
after the termination of the m  service (1 smsn-1) at
epoch t-u. Then (0, t-u) is a B.P, with m services.

We then have to arrange for a further arrival at epoch

t-u+w(0< W <u), which reproduces the initial conditions.
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During u-®, n-m services are required, with or without idle

periods, the last terminating at epoch t. Hence

n-1 t u "
N S B O B A L
m=1 0 °
n-1 3t
= T klex e Moln (0]

using Eq. A.8. Now using Eq. A.5 for 1s<msn-1, we have

-\t

e 3 3
2 [D (hl,l hln-l) +

1 (t) =

3 4
3* -p*(i 3% +
+D (hl,Z hln-2> D ("2,2 hm_2>

+ Da(hl,B *hln-g) 'D4(h2,3 * hln—B) +03 (hg,g ""hln_3>

+lll.llllll

® 3% 4 ¥* ) 5 ( ¥* ).—
+D(h1n-1 hl,l)‘D (th-l hy 1)¥D7 \P3pq ¥hy 4

cevsset(=)"D h *h, )

n-1,n-1" "1,1°

-\t
I [D“(th) —D‘(hgn)+D5(h4n) = veu(-)pnHl (h_ )

[Eq. A.13]
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This, with Eq. A.12 establishes Eq. A.5, it remaining only
to show from first principles that

-t
= e a 7}
k, (t) : D “‘1,1)’ [Eq. A.14]
which is obvious since Dz(h1 1) = 3b.
3

The p.d.f. k(t) of a busy period of length t is given by

k(t) = T kn(t). [Eqg. A.15]
nx1

Using Eq. A.5 we obtain

k(t) = e_it T (-)" p?t? [h(n+1)(t)] , [Eq. A.16]
n=0

where h(n)(t) = h(n)(l, t).

As a check we now propose to obtain Eq. A.16 by alternative
means, The event F consisting of the beginning of a B.P.

is recurrent for M/G/e and the probability of its occurrence
in (t, t+dt) is Ap,(t)dt, where p,(t) 1is the probability
that a system intiated at t=0 with one member will be

empty at time t. The interval between two successive

occurrences has density function jk(t) e-)‘t, and so

\Po(t) = kk*e_)‘t-f-()\k*e_)‘t)“[kpo(t)] , [Eq. A.17)

since F may occur for the first time in (t, t+dt), or

may occur at a previous epoch.
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If mn,(z) and K(z) are the Laplace transforms of p,(t)
and k(t), then Eq. A.17 is equivalent to

(A+z)my(2)
K(Z) = 1+)\TT°(Z) . [Eq; A018:|
This gives formally
N .
K(z) = £ (-0 (tz) me™ 1 (2). [Eq. A.19]
’ nz0 .
Now it is well known [e.g. Khintchine (Ref. 2)] that
~\t+Af RN
po(t) = e MM = 2 DLh(t)], | [Eq. A.20]

where h(t) = h(1, t).

If we write H(z) for the Laplace transform of h(t) it follows
immediately from Eq. A.20 that

m,(z) = (atz) H(z+))/x

and hence that Eq. A.19 gives

K(z) = 2" I (=) (+z2)™2 1t ().
neg
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This transforms bhack into

k(t) - e—xt k-l Z (__)n Dn+2 [h(n+1)] ,
nz0

which is Eq. A.16.

Thus we have a check on the purely probabilistic arguments of
the earlier paragraphs. Because of Eq. A.18 and the known

properties of p,(t), we also observe from Eq. A.18 that

e -
Jo k(t)dt 1.

The mean B.P. length is perhaps most expeditiously obtained
from the relation, applicable to M/G/=, that

B(I) -
=(F) T E(D) = tii? po(t) = e ¥, [Eq. A.21]

where E{( ) means "expected value of", and I denotes an

idle period. This gives

E(BP) =

> =

(ef-1), [Eq. A.22]

where p=)/E (service interval).




